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Abstract. It is shown that a generalized mean-field approximatirn can give bounds for
Ising systems of arbitrary spin. As a particular example, a spin 1 Ising model which has been
used as a model for *He-*He mixtures is considered.

1. Introduction

In a series of recent papers, Enting (1973a, b, ¢) has given proofs that various generalized
mean-field approximations give upper bounds for some thermodynamic quantities in
Ising models. As a consequence bounds have been given for critical temperatures and the
crossover exponent. These bounds are generalized to Ising systems of spin other than
in the present work.

To relate spin greater than 4 to earlier spin $ work we use the approach of Griffiths
(1969) who showed that an Ising system of spin greater than § can be represented in terms
of a spin $ Ising system. It will be shown that the results given by Enting can be applied
to this spin 4 analogue system to give bounds for the original spin greater than § system.
The mean-field solution for spin greater than 1 gives upper bounds for magnetization
and susceptibility. In addition one can obtain magnetization and susceptibility bounds
from generalized mean-field approximations in which only some of the interactions are
treated by the mean-field approximation.

The bounds for spin $ apply only for systems with only one-spin and two-spin inter-
actions, all of which must be ferromagnetic. For most cases these restrictions apply
when the bounds are generalized to arbitrary spin. An exception occurs for the special
case considered in §4 where an interaction of the form AS? can have, under certain
conditions, positive or negative values for A without invalidating the proofs.

In detail the outline of the paper is as follows: in § 2 it is shown how the bounds on
the analogue spin system are transformed into bounds for arbitrary spin. Section three
shows how the results of § 2 lead to generalizations of all the bounds obtained for spin 3.
As well as this a new exponent bound is given. This is another case in which a scaling
theory prediction for an exponent is shown to give an upper bound. Itis pointed out that
investigation of this exponent would provide a test of scaling predictions for the region
below the critical point. Section 4 considers the *He—*He model of Blume et al (1972)
which has been investigated by Oitmaa (1971, 1972), using high temperature series
expansions. This system is used to illustrate the applications of the generalized bounds.

t Present address: King’s College, Strand, London, UK.
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2. Bounds for arbitrary spin

The basic hamiltonian considered is:

H = H_Z Jkk'sksk', Jkk/ > 0 (1)
kk’

where H has only one-spin and two-spin interactions, all of which must be ferromagnetic.
If we consider the mean-field hamiltonian:

H = H_Z T (SelSk D1+ S S n) (2)
kk'

then equation (9) shows that taking the expectation value <S> gives an upper bound for
{S8;>y. However, since (2) is expressed in terms of unknown expectation values it is
more useful to consider a self-consistent hamiltonian :

H' = H=3 Ju(Si{Sk>u+ SidSidm)- A3)
k&'

The result that {S;>y. > {S;> then follows immediately since the spin expectation
values are increasing functions of the interaction strengths. The principle is the same as
that used by Thompson (1972) in finding bounds for the spin 4 system. A comment by
Liu (1973) suggests the need for further justification of this step. The most important
aspect of the proof given here (equations (10) to (14)) is that it proves the existence of self-
consistent solutions of (3). In constructing these solutions it is necessary to take the limit
of an infinite sequence of solutions. There is a certain amount of flexibility in choosing
the stage of the argument at which this limit is taken. Enting (1973b, ¢) give alternative
developments.
Following Griffiths (1969) we represent the Ising spins S, by

where the spin S, is of magnitude 4p; actually the magnitude can be allowed to vary from
site to site.

We now use the result due to Griffiths that it is possible to construct analogue
hamiltonians A, A’ such that

-1 ,
Sou = (Tsr) (i eXp(—ﬁH)]((Tsr) [eXp(—BH)]) = X "jk>

j=1

H

P
= %(TE) Zl T GXP(—ﬂﬁ)) ((Tr) [exp(—ﬁﬁ)]) ~ (5)
Fa ji= Gab

An analogous relation connects H' and A’. The important point to note is that if the
hamiltonians H, H' have only one-spin and two-spin interactions all of which are ferro-
magnetic, then these properties will also hold in the analogue hamiltonians.

It is now easy to show that each replacement in going from (1) to (2) will increase
the expectation value of each spin. The original term is

p P
i SiSy = %Jkk’( Z Ujk) Z aj'k’)' (6)
i=1

i=1
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It is replaced by

p P
T [SeSedu+8i{Su] = e Z z loilojida+ 000500} (7
ji=1j=1
Working in terms of the ¢, variables one can use Enting’s results for the generalized
mean-field bounds to show that each replacement of the type given above will increase the
expectation value of each spin ¢,,. This gives

oappn € {Ourp 8)
Converting back to the original S variables gives
Sou < LSy ©)
To construct self-consistent solutions of (3) we now consider a sequence of hamiltonians
H(n) = ﬁ—%; TSk uin— 1)+ Su{SiDuim-1) (10)
H(0) = H"
One can then give an inductive proof that
Sum Z Sdum-1 (11)

using (9) as a starting point. The sequence of (S, >, is bounded (by 3p) and so must have
a limit as n — o0, denoted <{S,> (s, Putting

H* = H—Z Jkk’(sk<sk’>H(oo)+Sk'<Sk>H(co)) (12)
kk'

one has, so long as the expectation values are continuous functions of the interaction
strengths,

le <Sa>H(n) - <Sa>H* (13)
so that

<Sa>H(oo) = <Sa>H"‘ (14)

This means that (S, (., Which has been shown to exist, is a self-consistent solution of
the hamiltonian (3).

3. Bounds for exponents

The original application of the generalized mean-field approximation was to the aniso-
tropic Ising model. In that case the interlayer interactions of strength nJ were treated
by a mean-field approximation while the intralayer interactions were treated exactly.
Generalizing that treatment to spin greater than 1 one obtains the equations:

R(S, T, #,n) < R*S, T, #.n) = R,p(S, T, # +gnJR¥) (15)

where R is the value of {(S,) for spins of magnitude S, R,p, is the two-dimensional result
for spin S

RZD(S9 T; %) = R(S, T; m 0) (16)

and ¢ is the coordination number for interlayer bonds.
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As pointed out by Enting (1973a) bounds for the magnetization can be used to find
bounds for the high temperature initial susceptibility so that

XZD(Sa T)
ST ————c—- (17)
f " 1—qnJy2n(S, T)
These quantities refer to susceptibility per site in each case. One then follows Fisher
(1967) in noting that bounds for the susceptibility lead to bounds for the critical tempera-
ture so that if the bound (17) diverges at T(S, ) then

T(S.n) < T(S,n) (18)
and

T(S, 1) — TS, 0)~n"". (19)
Since

TS, m) = TS, 0)~n*"* (20)

one could conclude that
p<y=3 (21)

but it appears that the results given by Grover (1973) extend to spin greater than  so
that ¢ = Z, in which case the bound (18) leads to a bound on the amplitude of the singu-
larity in T,.

To find a bound for the magnetization at T,(S, 0) we note that R, varies as #'°
so that

R* ~ (nR*)V? (22)
or

R* ~ plfe=1), (23)
If one has

R(S, T(S,0), # = 0,n) ~ n'M¥ (24)
then

y<o—1=14

The scaling prediction is = 14. This is obtained most easily by following Hankey and
Stanley (1972) and assuming that the singular part of the free energy (and hence of the
other thermodynamic quantities) is a generalized homogeneous function. In particular
putting

e=T-T(S,0) (25)
assume

R(2%, A’ S, i) = AR(e, #,n). (26)
The well known two-dimensional exponents give

a=8=p""1 (27)

b=15=9¢ (28)
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and we also have
c = ¢a = 14. (29
The prediction for ¥ is obtained by substituting e = 0, # = 0,2 = n~ ! into (26) to give
R(0,0,7n) = n'*R(0,0, 1). (30)

The generalized homogeneous function assumption is justified by the renormalization
group arguments of Grover (1973) so that it appears that = 14. In that case by in-
cluding the appropriate amplitude factors in (22), (23) one could, in principle, find bounds
for the amplitude of the singularity in R as n — 0.

4. Bounds for a spin one system

As an example of the use of bounds we consider a particular spin one model, described by
the hamiltonian (31) proposed by Blume et al (1972) as a model for “He—>He mixtures.
References to a number of other applications of this model are given by Oitmaa (1971,
1972) who has analysed the critical behaviour by means of high temperature series
expansions.

H=—-JY'SS,+AY S2-1n3S,. (31)
ab a a

The lattice that will be considered is face-centred cubic so that direct comparisons can be
made with the results of Oitmaa. The sum X’ is over all nearest-neighbour pairs. A
is the difference in chemical potentials for *He, *He. 7 is the conjugate to the superfluid
order parameter and will be zero in all the following calculations. The spins are spin 1, so
that when the spin (ie the z component) is zero this is interpreted as the presence of *He
at that site. The values + 1 correspond to “He, the ordering of these values being inter-
preted as superfluid ordering. Transforming (31) to an analogue hamiltonian gives, for
n=>y

-~

H=-3JY (6,+0,)(0,+0,)+3AY 2+20,0,)+) kgTf(1 ~0,0,) (32)
ab a a

where S, = 3(o,+0,). Thesets {g,} and {0, } form two coupled Fcc sublattices of spin
1. This has represented the three values of S, = 1, 0, — 1 by the four pairs of values of
(6,,04), ie (1,1), (1, = 1), (=1,1), (=1, —1). To obtain the correct weighting in the
partition function we need a weighting factor on each site whichis 1 for(1, 1)and(— 1, — 1)
and } for (1, —1) and (—1, 1). This factor is obtained by the final term in hamiltonian
(32) so that in exp(— ) this term is

exp[—f(1-1)] =1 ifS= =1 (33)

exp{—f(1+1)] ifS=0. (34)
The required weighting is given by

e =1

f=3%In2=103466.... (35)

As pointed out by Griffiths, this hamiltonian is T dependent. We can however treat T
as a normal interaction parameter when constructing a partition function and when
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performing any mathematical operation on that partition function except for differenti-
ating with respect to T. The order parameters and susceptibilities are derivatives with
respect to 7 evaluated atn = 0.

For A < 0we can use the results of § 2 directly and immediately show that the mean-
field critical temperature plotted by Oitmaa (1972) is an upper bound for the true critical
temperature. This result can be shown without having to make any detailed study of
the T dependent term in (32). One works in terms of mean-field approximations to (31)
without ever considering (32).

This particular model is, however, a special case. One can combine the interactions
to form an interaction (k3 Tf —% A)o,6,.. One can then extend the bounds into the region
of positive A so long as

A < 2%kTIn2. (36)

One works within the analogue system (32) and applies bounds for the analogue system
to the original spin 1 system by using

(8> = #<o,) +<0,)) (37)
<S3> = %+%<aaaa’>‘ (38)

For any strictly positive A it is not possible to satisfy (36) for all values of T but this does
not prevent one from finding bounds for T,. If one treats (32) by any generalized mean-
field approximation one finds a function 7°(A) which is a temperature above which the
approximation gives (¢, ura = 0. If T > A/kgIn 2, {0,> < {06,)qra and if T > T'(A),
(o, >ura = 0. Since below the actual critical point, T, one assumes {o,> > 0 one has

T. < max(} Afkg In 2, T'(A)). (39)

A number of bounds of this type are plotted on figure 1, there being a number of bounds
T'(A) that can be obtained. One finds the bounds T'(A) by treating (32) by a generalized
mean-field approximation. Some or all of the interactions in (32) are replaced by their
mean-field equivalent.

Replacing all interactions by their mean-field equivalent gives a critical point defined
by kg T, equal to the sum of interactions on one spin

keT, = +3J2q—4 A+ [kgTf Ip=1_. (40)
q is the coordination number, 12 for the Fcc lattice, so

6J—4A

kyT' = — 2
B —1n2

(41)

This is the worst of the bounds that will be given since it is obtained by treating all inter-
actions by their mean-field approximation. Improved bounds are obtained if some
interactions are treated exactly. Consider treating the interactions of strength 1J within
each of the Fcc sublattices exactly. The other interactions are treated approximated
by a mean field of strength (3Jq—4 A + kg Tf)<0,) at each site.

If on an Fcc lattice one has (g, = R(T, ) for an interaction strength 3J, then

o> = R[T,(3Jq—3 A+ kg Tf)<a,)> + #]. (42)
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Figure 1. Critical temperature bounds for the *He-*He model. Full curves are bounds,
broken curves their analytic continuations. x marks the series estimate of the tricritical
point (Oitmaa 1972). The defining equations for bounds are: curve A, (41); curve B, (44);
curve C, (45). The dotted line gives the boundary of the region in which the bounds are valid,
given by equation (36). Curve D is the T, obtained from the Bethe approximation to the
susceptibility of the analogue system.

The susceptibility (d/ds#){a,) is given by

d dR
d7<aa> d” ( 1 +(IJq 7A+kBTf) <aa>)
dR dR
d.}f(l (GJ 1A+kBTf) . (43)

H is an artificial field introduced to obtain expressions for the susceptibility. In the
absence of a field this susceptibility can be given a real interpretation as a sum of two
spin correlation functions. dR/d# is the initial susceptibility of an Fcc lattice. In this
approximation, T' is the temperature at which the denominator of (43) vanishes so that
one has

A= 2[3J+kBT'f— (d%% _1]. (44)

This bound is evaluated and plotted in figure 1. dR/ds# as a function of T’ was found
by using the representation for the Fcc susceptibility given by Sykes et al (1972). This
bound is quite close to the bound given by (41). This is because an Fcc lattice has a large
coordination number and so the susceptibility is given to a comparatively close approxi-
mation by the mean-field approximation. Treating the sublattice exactly does not
give a great improvement.

Another possibility is to treat the interactions between o,, ¢, exactly and all other
interactions by mean field. This means that one treats a spin S, on its own, treating the
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A term exactly. The Tf term gives the correct weightings to the partition functions of the
spin. This approximation is exactly the mean-field approximation of treating one spin
exactly but approximating its interactions with other spins by a mean-field approxima-
tion, as done by Oitmaa (1972).

The susceptibility expression is, above T,

d 2
EI,<S> T 2+ePA_28q)°

(45)
The critical point is found by equating the denominator to zero. The curve which has
been given by Oitmaa (1972) is also plotted on figure 1.

The bounds are valid up to A/J =~ 4.0 and so do not apply near the tricritical point
which was estimated by Oitmaa to be at A/J ~ 5.7. From figure 1 it will be seen that the
bound from (45) is the best bound on T, over most of the values of A. There is however a
small range of A values for which the bound (44) is best.

It is possible to improve these bounds by breaking the lattice into small clusters,
treating interactions within each cluster exactly and treating interactions between
clusters by the mean-field approximation. This is not attempted here because experience
with other systems indicates that the improvement obtained by using clusters of a
reasonable size is slight.

Enting (1973c) has shown that a generalized random-phase approximation gives
upper bounds for {g,0,>. This would be useful in the present case because of the rela-
tion (38) and the interpretation of {(S*) as the *He concentration. The full expression
for the bound involves the lattice Green functions for an Fcc lattice and is not quoted
here.

Since the bound (41) is obtained by treating all the interactions in the analogue system
by the mean-field approximation it can be obtained using the results of Fisher (1967) and
Thompson (1972). The bound that is obtained for magnetization is not, however, the
mean-field solution for spin 1 which is obtained by treating the T-dependent weighting
factors and the AS? interaction exactly.

In a spin $ system the Bethe approximation gives an upper bound for the suscepti-
bility (Fisher 1967). Figure 1 shows that the T, bound obtained by applying this result
to the analogue system gives a better bound than any of the techniques discussed above.
To obtain bounds for the ‘magnetization’ it is, however, necessary to use one of the mean-
field bounds.

5. Conclusions

A number of useful results have been proved in the preceding sections. Earlier generalized
mean-field bounds have been extended to the case of arbitrary spin and a new bound
has been obtained for an exponent describing crossover behaviour of the magnetization
in the anisotropic Ising model. The bound obtained corresponds to the scaling law
prediction for this exponent.

The bounds for the “He—*>He model are useful in illustrating the various methods
of obtaining bounds for spin one systems. They do not however give a large amount of
significant information concerning the *“He—*He model since the proof does not hold near
the tricritical point.
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